norm_num extensions for GCD-adjacent functions #
This module defines some norm_num extensions for functions such as
Nat.gcd, Nat.lcm, Int.gcd, and Int.lcm.
Note that Nat.coprime is reducible and defined in terms of Nat.gcd, so the Nat.gcd extension
also indirectly provides a Nat.coprime extension.
theorem
Tactic.NormNum.isNat_gcd
{x : ℕ}
{y : ℕ}
{nx : ℕ}
{ny : ℕ}
{z : ℕ}
:
Mathlib.Meta.NormNum.IsNat x nx →
Mathlib.Meta.NormNum.IsNat y ny → nx.gcd ny = z → Mathlib.Meta.NormNum.IsNat (x.gcd y) z
theorem
Tactic.NormNum.isNat_lcm
{x : ℕ}
{y : ℕ}
{nx : ℕ}
{ny : ℕ}
{z : ℕ}
:
Mathlib.Meta.NormNum.IsNat x nx →
Mathlib.Meta.NormNum.IsNat y ny → nx.lcm ny = z → Mathlib.Meta.NormNum.IsNat (x.lcm y) z
theorem
Tactic.NormNum.isInt_gcd
{x : ℤ}
{y : ℤ}
{nx : ℤ}
{ny : ℤ}
{z : ℕ}
:
Mathlib.Meta.NormNum.IsInt x nx →
Mathlib.Meta.NormNum.IsInt y ny → nx.gcd ny = z → Mathlib.Meta.NormNum.IsNat (x.gcd y) z
theorem
Tactic.NormNum.isInt_lcm
{x : ℤ}
{y : ℤ}
{nx : ℤ}
{ny : ℤ}
{z : ℕ}
:
Mathlib.Meta.NormNum.IsInt x nx →
Mathlib.Meta.NormNum.IsInt y ny → nx.lcm ny = z → Mathlib.Meta.NormNum.IsNat (x.lcm y) z
Given natural number literals ex and ey, return their GCD as a natural number literal
and an equality proof. Panics if ex or ey aren't natural number literals.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Given natural number literals ex and ey, return their LCM as a natural number literal
and an equality proof. Panics if ex or ey aren't natural number literals.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Evaluates the Nat.lcm function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Evaluates the Int.gcd function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Evaluates the Int.lcm function.
Equations
- One or more equations did not get rendered due to their size.